Assessment of farmers' field for root rot disease on improved cassava varieties released in Nigeria

C.G. Afolabi¹, O.C. Okechukwu³, I.A. Kehinde¹, and R.U. Okechukwu²

¹University of Agriculture, Abeokuta, Nigeria ²International Institute of Tropical Agriculture, Ibadan, Nigeria; ³University of Ibadan, Ibadan, Nigeria

Corresponding Author: C.G. Afolabi Email:

Manuscript received: 10/07/2011; accepted: 15/12/2011

Abstract

More cassava is grown in Nigeria than anywhere else, but production is still limited by several factors including root rot disease which is common in cassava growing areas. A survey was carried out to assess farmers' fields for yield and root rot disease on cassava varieties in seven States of Nigeria. Field assessment was based on 5 m by 5 m quadrats in two locations within a plot by counting the number of plant stands, total number of fresh roots, number of rotted roots, and weight of fresh roots within the quadrat. Across States and within varieties there were significant differences ($P \le 0.05$) in number of plants, total root number, fresh root yield (t/ha) and rot (%). This could be attributed to differential management practices, soil type and fertility, age of crop, and environmental conditions. The highest fresh root yield was observed on Abutu (52.2 t/ha); the lowest yield was on Bendel (5.4 t/ha). Both are local varieties. Improved varieties had a comparative yield advantage of 20 t/ha local varieties despite the fact that more rots (11.1%) were observed on improved varieties than on local varieties (2%). The damage experienced on improved varieties was largely due to the age of the crop and susceptibility to waterlogged fields. These underscore the need for farmers growing improved varieties not to leave their cassava on the field for more than 15 months, especially if such fields are prone to waterlogging. Botryodiplodia theobromae, A. niger, A. flavus, F.usarium solani, F. oxysporum, and Armileria melea were associated fungi recovered from the rotted samples across locations.

Keywords: Cassava, yield, root rot, fungal pathogens, farmers' field assessment.

Introduction

Cassava (Manihot esculenta Crantz) is a major food crop for an estimated 260 million people in Africa (El-Sharkawy, 1993). Nigerian cassava production is by far the largest in the world; one-third more than the production in Brazil and almost double the production of Indonesia and Thailand. Cassava production in other African countries, such as the Democratic Republic of the Congo, Ghana, Madagascar, Mozambique, Tanzania, and Uganda, appears small in comparison with Nigeria's substantial output (Philips et al. 2004). Much of the cassava is produced in the forest, derived, and southern Guinea savanna agroecozones of Nigeria that largely fall within the areas with good soil and adequate rainfall. Although cassava can produce a crop with minimal inputs, optimal yields are recorded from fields with average soil fertility levels for food crop production and regular availability of moisture.

Cassava ranks highly as a major staple food crop, particularly for the low income earners and resourcepoor farmers in the developing economies of sub-Saharan Africa (Hahn et al. 1989). However, in recent times, the crop is progressively gaining a strategic position in global trade as a result of the efforts by various research and development stakeholders in developing value-added cassava-based products for human consumption and industrial uses (Onyeka et al. 2005). Various food applications take advantage, of properties of cassava starch, the odorless, clear paste and high freeze-thaw stability, (Plucknett et al. 2003). The starchy roots can be processed into gari, fufu, lafu, Kpokpogari, or bobozi; they also used for making tapioca. Industries take advantage of the clear appearance of cassava starch and the sticky texture of its cooked paste in the manufacture of adhesives and glue (CSTRU, 2007). Processed cassava starch can compete with other starches for sizing paper and

textiles, producing pharmaceutical dustings and disintegrating pills, biodegradable products, ethanol and acetone, explosives, and corrugated boxes (Plucknett et al. 2003).

Ezedinma et al. (2007) in a study to assess the trends in cassava production since the 1990s indicated that the increase in production in Nigeria is principally as a result of area expansion rather than increased yield /ha. The causes for low yields/ha are diverse but diseases and numerous pests are known to partially contribute. Diseases affect plant establishment and vigor, inhibit photosynthetic efficacy, and in some cases cause pre-harvest or post-harvest deterioration (Lozano et al. 1981; IITA 1990). Diseases can lead to total crop failure with losses in tuber yield as high as 90% under favorable conditions (Wydra and Msikita, 1998). Among the diseases that attack cassava, the incidence of root rots has been reported to be higher in the forest areas than in other ecologies (Chalwe et al. 1999; Onyeka 2002). The stagnation in yield may be connected with the activities of the soil's hidden root rot fungi; especially when the improved varieties cultivated were not deliberately developed for root rot resistance. Root-rotting pathogens affect mostly the underground portion of the plant (and are hence out of sight). Because the plant has an extensive root system (and thus can remain standing despite a significant portion of its roots being rotted), the nature and extent of the root rot problems are poorly understood and quantified in Africa. Compared with other major diseases of cassava, root rots caused by several fungi are the most poorly understood and among the least studied (Bandyopadhyay et al. 2006). Root rot, apart from reducing yield, can also reduce the quality of roots harvested. Thus this current study tends to assess cassava yield and the incidence of root rots on improved and local cassava varieties on farmers' fields in seven States of Nigeria.

Materials and Methods

Survey sites and sampling. The study was carried out in Oyo, Osun, Ondo, Ekiti, Kogi, Benue, and Nasarawa States (Table 1). Oyo State is located within the derived savanna zone of the country. With a bimodal rainfall distribution averaging between 1300 and 1500 mm annually, and maximum temperatures varying from 25 to 35°C. Osun, Ondo, and Ekiti States are within the humid forest, characterized by two growing seasons, starting from April to November with an annual rainfall of 1500 to 2000 mm, average annual temperature of 24.5 to 27.5°C. Kogi, Benue, and Nasarawa States lie within the southern Guinea savanna zone with an annual bimodal rainfall averaging between from 1000 mm to 1300 mm , and temperatures ranging from 26 to 38° C.

The study was initiated in November 2010 and continued for 2 months. Sixty-two farmers selected from 80 villages were involved. The villages were selected based on propagative materials distributed to the farmers in the previous year by IITA, Ibadan through the project of USAID-Unleashing the Power of Cassava in Africa . Fields that were planted during a similar period were selected to minimize variation caused by different planting dates. Generally, planting took place between July and August 2009. In each farmer's field, a quadrat measuring 5 m \times 5 m area was demarcated in two spots where observations were recorded. Observations were made on number of plant stands in a quadrat, total number of roots, number of rotted roots, and weight of fresh roots. Rotted samples were randomly selected for the isolation of the associated fungi.

Data collected were subjected to analysis of variance using general linear model procedure. Means were separated by Duncan Multiple Range Tests (DMRT).

Isolation and identification of associated fungi in the laboratory. Roots showing rot symptoms were collected from each site where the diseases were observed during the survey for the detection of the associated pathogen in the laboratory. Isolation of rot pathogens was carried out on acidified potato dextrose agar (PDA). Small tissue pieces of diseased samples were surface sterilized for 3 min in 10% sodium hypochlorite solution, rinsed in 5 changes of sterile distilled water and dried on sterilized paper towels before inoculation on acidified PDA. The inoculated plates were incubated at 27 °C for 5-7 days during which pure cultures of microbial growth were established for identification. Confirmation of associated causal pathogens of rot was carried out, based on the morphological and cultural characteristics on PDA, and microscopic observation following the fungi identification key of Barnett and Hunter (1998).

Results and Discussion

A total of 29 cassava varieties were examined during the survey, 13 improved and 16 local varieties. The number of plants and total number of roots differed significantly ($P \le 0.05$) between States and varieties (Table 2), which indicates that farmers did not use the

State	LGA	Village	Longitude	Latitude
Оуо	Akinyele	IITA Idi-Ose	7 49.895	3 90.706
Оуо	Ido	Aafa Dauda	7 29.615	003 44.129
Оуо	Ido	Idi Amu	7 31.343	003 42.204
Оуо	Ido	Ilaju	7 32.917	003 35.975
Oyo	Ido	Elere Akilo	7 31.271	003 37.709
Оуо	Ido	Elere Akilo	7 31.478	003 38.350
Оуо	Ibarapa East	Idi Ata	7 31.563	003 32.954
Oyo	Ibarapa East	Idi Ata	7 31.896	003 33. 078
Оуо	Ibarapa East	Idi Ata	7 32.233	003 32.761
Оуо	Ibarapa East	Olokete	7 32.103	003 28.107
Оуо	Ibarapa East	Olokete	7 32.086	003 28.030
Оуо	Saki East	Igbo Osanyin, Ago Amodu	8 36.095	003 36.600
Оуо	Saki East	Igbo Osanyin, Ago Amodu	8 35.756	003 36.397
Оуо	Saki West	Aba Ogbomosho	8 44.940	003 28.523
Оуо	Saki West	Aba Ogbomosho	8 44.616	003 28.997
Oyo	Saki West	Aba Ogbomosho	8 43.540	003 27.088
Oyo	Kajola	Elewure	8 02.447	003 25.475
Oyo	Kajola	Elewure	8 02.320	003 25.520
Oyo	Kajola	Elewure	8 02.136	003 26.854
Oyo	Kajola	Elewure	8 02.416	003 25.505
Oyo	Oyo West	Fasola	7 54.625	003 45.744
Оуо	Oyo West	Fasola	7 54. 665	003 45.817
Oyo	Atiba	Busari	7 57.776	004 02.650
Oyo	Atiba	Sakuta	08 02.926	003 99.426
Oyo	Atiba	Sakuta	08 03. 038	003 59.314
Osun	Aiyedire	Ile Ogbo	07 35.972	004 17.143
Osun	Aiyedire	Ile Ogbo	07 35.357	004 16.704
Osun	Aiyedire	Ile Ogbo	07 35.679	004 16.844
Osun	Aiyedire	Ile Ogbo	07 35.655	004 16.825
Osun	Aiyedire	Ile Ogbo	07 35.791	004 17.130
Osun	Odo-Otin	Oponda	08 03.035	004 40.753
Osun	Odo-Otin	Oke-Otin	07 59.480	004 41.480
Osun	Odo-Otin	Oke-Otin	07 59.035	004 41.315
Osun	Obokun	Esun	07 42.419	004 45.366
Osun	Ilesa-East	College farm	07 35.735	004 43.228
Osun	Ede South	Olorogbo	07 40.608	004 25.457
Osun	Ede South	Awere-Alamo	07 41.819	004 25.245
Osun	Ede South	Awere-Alamo	07 41.819	004 25.249
Osun	Ede South	Ologobi Oja	07 40.243	004 26.089
Osun	Ede South	Olorubu	07 40.802	004 25.640
Osun	Atakumosa-West	Oloja Ibala	07 43.728	004 35.068
Osun	Atakumosa-West	Oloja Ibala	07 43.107	004 35.453
Osun	Osogbo	Oke-osun Farm Settlement	07 44.604	004 31.752
Osun	Egbedore	Ido-Osun	07 47.959	004 29.657
Osun	Egbedore	Ido-Osun	07 49.603	004 31.865
Ekiti	Ikole	Ірао	07 59.230	005 36.031
Ondo	Ile-oluji/Oke-Igbo	Agiodo	07 10.680	004 51.521
Ondo	Ile-oluji/Oke-Igbo	Gloryfield Rd	07 12.134	004 51.197
Ondo	Ile-oluji/Oke-Igbo	Farm Settlement	07 14.121	004 51.651
Ondo	Akure North	Km 5, Owo Rd.	07 16.107	005 15.915
Ondo	Owo	Otu land	07 16.562	005 30.799
Ondo	Owo	Iyana Otaago	07 16.800	005 31.084

Table 1. Farmers' location and coordinates of each location collected during the survey.

Contd.

Kogi	Ankpa	Acharana	07 18.517	007 28.099
Kogi	Bassa	Gboloko	07 45.511	006 52.847
Kogi	Bassa	Gboloko	07 45.459	006 52.838
Kogi	Dekina	Egume	07 33.411	007 16.529
Kogi	Dekina	Anyigba	07 32.817	007 13.699
Kogi	Dekina	Anyigba	07 32.798	007 13.640
Kogi	Dekina	Agada, Abocho	07 35.843	006 51.773
Kogi	Ofu	Ofagada	07 03.471	007 06.478
Kogi	Okene	Ere	07 32.141	006 08.877
Kogi	Okene	Ageva	07 31.728	006 10.026
Kogi	Okene	Oguda	07 21.584	006 22.334
Kogi	Okene	Oguda	07 22.053	006 22.776
Kogi	Adavi	Osara	07 37.972	006 24.100
Kogi	Okene	Osara	07 37.799	006 23.915
Kogi	Mopamuro	Amuro	08 09.443	005 55.405
Kogi	Yagba West	Ejiba	08 16.564	005 39.676
Kogi	Yagba West	Ejiba	08 17.468	005 39.221
Benue	Otupko	Upu	07 13.880	008 10.708
Benue	Otupko	Otobi	07 05.326	008 07.421
Benue	Otupko	Otobi	07 05.457	008 07.362
Benue	Otupko	Otobi	07 06.909	008 06.188
Benue	Otupko	Otukpicho	07 16.774	008 11.648
Benue	Konshisha	Mpav	07 20.034	008 38.866
Nasarawa	Kokona	Maisauri	08 50.139	007 57.634
Nasarawa	Karu	New Karshi	08 51.691	007 35.289
Nassarawa	Nassarawa Eggon	Ubbe	08 52.581	008 25.530
Nassarawa	Wamba	Wayo	08 51.158	008 37.113

Table 2. Analysis of variance for number of plant, total fresh root, fresh root yield (t/ha) and rotted roots (%) for 29 varieties of cassava in farmer's fields in 7 States

		Number of J	olants	Total fresh r	roots	Fresh root yield	l (t/ha)	Rotted root ((%)
Source	DF	Mean Square	Pr>F	Mean Square	Pr>F	Mean Square	Pr>F	Mean Square	Pr>F
State	6	349	0.004	14874	0.005	446	0.011	248	0.001
Rep(State)	7	36	0.410	1601	0.401	63	0.358	14	0.998
Variety	28	123	<.0001	5147	<.0001	208	<.0001	633	<.0001
State*Variety	21	108	<.0001	1861	0.244	127	0.003	343	0.000
Error	154	35		1529		57		131	
Total	216								
R-Square		0.643		0.516		0.559		0.597	

recommended spacing during planting but responded differently, based on need and land availability. The number of plants within the examined quadrat ranged from 8 in Powerline to 41 in Akpofafa, while the total root number ranged from 60 in Pakidudu to 218 in Akpofafa; all are local varieties (Table 3). The varied plant population and root number within the quadrat suggest that farmers' economic interest accounts for the variability. We observed that some farmers partially mechanized their farming operations by plowing their fields before planting; others used local heaps. Also, while some farmers planted cassava as a sole crop, others intercropped and this largely affected the plant population and invariably the root number. Furthermore, the age of the crop, the variety, the soil structure, the soil fertility, and environmental conditions during growth will greatly determine the number of roots harvested. The state \times variety interaction was highly significant (Table 2) for the number of plants, indicating that farmers did not plant the same way in each State. There was no significant interaction for total root number, suggesting that the majority of the varieties reacted similarly in terms of the total root number in those States.

Table 3 shows fresh root yield (t/ha) and rot (%) for each of the varieties. The fresh root yield (t/ha) differed ($P \le 0.05$) significantly among the States and within the varieties. This shows that the varieties responded differently to local environmental conditions, soil fertility, and management practices by farmers in each State. Fresh root yield ranged between 5 t/ha in Bendel and 52 (t/ha) in Abutu, and the grand mean was 18.3 t/ha. Both are local varieties. We observed that the exceptional yield of Abutu could be due to specific location adaption and the length of time it has stayed on the field. On average, we observed that improved varieties still performed better in term of fresh root yield (18 t/ha) than the local varieties (16.2 t/ha) (Table 3). Though this performance of improved varieties over local varieties looks marginal, when we consider that improved varieties mature faster than the local varieties, it would be evident that the turnover could be larger than as shown here. Furthermore, there was a significant difference ($P \le 0.05$) in State × variety interaction for fresh root yield. This is a response to differential management practices, soil fertility, environmental conditions, and type of varieties that are available within a State as these conditions are not homogenous. The highest fresh root yield was recorded in Oyo State (20 t/ha), followed by Kogi and Benue States with 19 t/ha. The lowest yield was recorded in Ondo State with 9 t/ha (Fig. 1). This confirms previous common knowledge that the three States have a favorable environment for root and tuber crops. A lot of farmers grow cassava in these

Table 3. Varietal mean performance for number of plants, total fresh roots, fresh root yield (t/ha) and rotted roots (%).

Variety	No of plant	Total fresh roots	Fresh root yield (t/ha)	Rotted root (%)	
91/02324	20.4	119.4	20.7	13.0	
92/0057	25.0	132.5	24.9	14.0	
92/0326	20.3	108.7	10.4	37.1	
95/0289	21.8	96.0	20.0	19.2	
96/1632	25.4	114.8	17.7	26.5	
97/2205	35.0	161.0	35.1	0.0	
98/0505	22.8	99.3	18.2	26.6	
98/0510	15.2	77.5	17.3	29.2	
98/0581	25.5	111.8	16.5	23.5	
Aba-Iyawo	21.0	70.5	15.6	0.5	
Abutu	22.0	190.0	52.2	0.0	
Ademola	19.0	88.0	17.3	1.0	
Akata	23.0	77.5	12.2	3.5	
Akpofafa	41.0	218.5	31.3	0.5	
Arubielu	9.5	84.0	14.0	0.0	
Atududu	20.0	95.3	7.7	0.0	
Bendel	18.5	71.0	5.4	2.8	
Ege-dudu	14.5	111.5	17.6	0.7	
Ichenke	34.0	97.5	19.8	0.0	
M98/0068	25.0	143.0	14.2	35.1	
Mokosooku	18.5	150.5	17.4	1.0	
NADP	30.0	160.8	20.9	0.4	
Odongbo	15.3	66.6	14.7	1.9	
Oko-iyawo	19.1	116.3	16.1	3.1	
Pakidudu	16.0	60.0	10.8	0.0	
Powerline	7.5	72.0	13.4	1.5	
TME419	21.0	117.0	19.9	10.8	
TMS30572	16.7	103.8	16.6	1.0	
Local	28.0	133.7	14.1	1.8	
Mean	21.8	112.0	18.3	8.8	
SE	1.3	7.0	1.7	2.2	
Improved varieties	20.1	110.8	18.0	11.1	
Local varieties	19.8	106.8	16.2	2.0	

States because the environmental conditions, and soil structure favour production. More of the farmers grow lots of improved cassava and this accounted for the high yields recorded in their farms, especially by those farmers who received both improved varieties and agronomic training from IITA.

There were also significant differences ($P \le 0.05$) in rotted roots (%) between the States and within the varieties and also State x variety interaction. Rotted roots ranged from 0 % in six varieties (97/2205, Abutu, Arubielu, Atududu, Ichenke, and Pakidudu) to 37 % in 92/0326 (Table 3). We observed that the high level of rot observed on improved varieties was largely due to the length of time they had stayed on the field (age of the crop) and the excessive rainfall experienced during the 2010 cropping season which made some fields waterlogged. Previous reports also associated rots with water logged fields (CTA 2008). This underscores the need for farmers to plant on soil that is well drained that would not retain water. Soils prone to waterlogging require the use of high ridges or mounds.

Although waterlogged fields could also limit the production of local varieties these seem to be more tolerant than the improved varieties. However, the ability of the local varieties to stay for 2-3 years longer on the field than the improved varieties suggest that they possess heritable characteristics that can be incorporated into the high yielding improved varieties. Therefore, there is need for cassava breeders to look at these quality traits in local varieties and incorporate some in the improved varieties for better performance. We also observed that more rots were recorded in Kogi (10%) and Oyo States (8%), with Nasarawa State having the least rot (0.2 %) (Fig. 1). The high level of rots recorded in Kogi State was largely due to heavy rain recorded in 2010 which made most field waterlogged, especially at Ejiba, Yagba West LGA. Likewise in Moniya, Akinyele LGA in Oyo State most of the samples of improved varieties were rotted due to their long duration on the field.

Although the frequency of occurrence of associated fungi was not directly measured, we were able to isolate fungi on some of the randomly selected rotted

Fig. 1. Fresh root yield (t/ha) and rotted root (%) in seven States of Nigeria.

roots. This was due to the condition of most of the samples and the duration of the survey, coupled with the fact that it was not part of the focus of this study and has been dealt with by several investigator. However, the commonly isolated fungi were *Botryodiplodia theobromae, Fusarium oxysporum, F. solani, Aspergillus niger, A. flavus, Sclerotium rolfsil, Armilleria melea,* and *Trichoderma* species. The most prevalent pathogen on the samples across the seven States remained *B. theobromae.* Previous reports have associated these pathogens were cassava root rot disease in Nigeria (Onyeka 2002; Onyeka et al. 2004; Bandyopadhyay et al. 2006). Pathogens gain entrance to the roots through wounds created by man and other root knot microbes especially nematodes.

In conclusion, improved varieties of cassava have a promising potential in achieving food sufficiency if losses from root rot could be adequately reduced. Emphasis should be made by the breeders on improving the tolerance level of the improved varieties to root rot, waterlogging, and resistance to pathogen stress. Farmers should also be encouraged to cultivate more of the improved varieties and harvest them early to enjoy the added yield.

Acknowledgement

We appreciate the contributions of IITA, Ibadan and the project *Unleashing the Power of Cassava in Africa* toward making this study a success.

References

Bandyopadhyay, R.; Mwangi, M.; Aigbe, S. O., and Leslie, J. F. 2006. *Fusarium* species from the cassava root rot complex in West Africa. *Phytopathology 96*:673-676.

Barnett, H. L., and Hunter B. B. 1998. Illustrated General of Imperfect Fungi. 4th Edition. American Phytopathological Society, Mineapolis Burgress Publishing Co. pp. 218.

Chalwe A., Malambo, C., Zimba, K., Nawa, I and Muimba-Kankolongo, A. (1999). Cassava root rots and associated micro-organisms in Zambia. *In* Food security and crop diversification in SADC countries: the role of cassava and sweet potato, Akoroda, M.O. and Teri, J.M. (eds). Pages 317 – 324. Proceedings of the scientific workshop of SARRNET, 17-19 August 1998, Zambia.

CTA. 2008. Overcoming root rot diseases of cassava.

NARO QAS for Agriculture. <u>http://www</u>. runetwork. de/html/fr/articles/article.html? article_id=5123. Accessed January 2011.

CSTRU. (2007). Thai Cassava Starch: A new choice for industrial use. Kasetsart Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University, Bangkok 10900, Thailand, In: http:// www.cassava.org/doc/Thai% 20Cassava%20Starch. pdf

El-Sharkawy, M. A. 1993. Drought-tolerant cassava for Africa, Asia, and Latin America. BioScience 43(7):441-451.

Ezedinma, C. I.; Lemchi, J.; Okechukwu, R. Sanni, L.; Ogbe, F.; Akoroda, M. O. and Dixon, A. (2007). Status of cassava production in Nigeria pages 183-189 *in* Mahungu, N.M. and Manyong, V.M., (eds.) Advances in Root and Tuber Crops Technologies for Sustainable Food Security, Improved Nutrition, Wealth Creation and Environmental Conservation in Africa. Proceedings of 9th ISTRC-AB Symposium, Mombasa, Kenya, 1–5 November 2004.

Hahn, S.K.; Isoba J.C.G. and Ikotun T. 1989. Resistance Breeding in Root and Tuber Crops at International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria. *Crop Protection.* 8: 147-168.

IITA. 1990. Cassava in Tropical Africa: a reference manual. IITA, Ibadan, Nigeria.

Lozano, J.C, Bellotti, A., Rayers, J.A., Howeler, R, Leihner, D.and, Doll, J. 1981. Field problems of cassava. Centro Internacional de Agricultura Tropical (CIAT) Cali, Colombia.

Onyeka, T.J. 2002. Cassava root rot fungi in Nigeria; variability in *Botryodiplodia theobromae* isolates and evaluation of cassava germplasm for root rot resistance. PhD thesis, University of Ibadan

Onyeka T.J., Ekpo, E.J.A.,and Dixon A.G.O 2004. Cassava root rot disease in West Africa: Review of recent literature and the field situation in Nigeria. *In*: Akoroda, M.O, Ngeve, J.V (eds.) Root crops in the 21st century. Proceedings of the 7th Triennial Symposium of the International Society of the Tropical Root Crops Africa Branch (ISTRC-AB). ISTRC-AB/IITA, Ibadan, Nigeria. Pages. 584-588.

Onyeka, T. J., Dixon A.G.O.; Bandyopadyay R., Okechukwu R.U. and Bamkefa B. 2005. Distribution and Current Status of Bacterial Blight and Fungal Diseases of Cassava in Nigeria. *ICP Technical Report* 01. IITA, Ibadan, Nigeria.

Phillips, T. P., Taylor, D. S., Sanni, L. and Akoroda, M. 2004. A cassava industrial revolution in Nigeria: The potential for a new industrial crop. FAO Rome,Italy.Pages 60.

Plucknett, D.L., Philips, T.P. and Kagbo, R.B. 2003. The global cassava strategy for cassava: Transforming a traditional tropical root crop. The Global Cassava Development Strategy and Implementation Plan Volume 1, Report of the FAO/ WHO Expert Consultation, Rome, Italy Pages 17-21.

Wydra, K. and Msikita, W. 1998. An Overview of the present situation of cassava diseases in West Africa. In: Akoroda M.O., Ngeve J.V. (eds.) Root crops in the 21st century. Proceedings of the 7th Triennial Symposium of the International Society of the Tropical Root Crops Africa Branch (ISTRC-AB). ISTRC-AB/IITA, Ibadan, Nigeria. pp.198–206.

African Journal of Root and Tuber Crops (2011) Vol 9. No. 1: page 64